Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Type 1 copper (T1Cu) centers are crucial in biological electron transfer (ET) processes, exhibiting a wide range of reduction potentials (E°′T1Cu) to match their redox partners and optimize ET rates. While tuning E°′T1Cu in mononuclear T1Cu proteins like azurin has been successful, it is more difficult for multicopper oxidases. Specifically, while replacing axial methionine to leucine in azurin increased its E°′T1Cu by ~100 mV, the corresponding M298L mutation in small laccase from Streptomyces coelicolor (SLAC) unexpectedly decreased its E°′T1Cu by 12 mV. X-ray crystallography revealed two axial water molecules in M298L-SLAC, leading to the decrease of E°′T1Cu due to decreased hydrophobicity. Structural alignment and molecular dynamics simulation indicated a key difference in T1Cu axial loop position, leading to the different outcome upon methionine to leucine mutation. Based on structural analyses, we introduced additional F195L and I200F mutations, leading to partial removal of axial waters, a 122-mV increase in E°′T1Cu, and a 7-fold increase in kcat/KM from M298L-SLAC. These findings highlight the complexity of tuning E°′T1Cu in multicopper oxidases and provide valuable insights into how structure-based protein engineering can contribute to the broader understanding of T1Cu center, E°′T1Cu and reactivity tuning for applications in solar energy transfer, fuel cells, and bioremediation.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Type 1 copper (T1Cu) proteins play important roles in electron transfer in biology, largely due to the unique structure of the T1Cu center, which is reflected by its spectroscopic properties. Previous reports have suggested a correlation between a high ratio of electronic absorbance at ∼450 nm to that at ∼600 nm (R = A450/A600) and a large copper(II) hyperfine coupling in the z direction (Az) in electron paramagnetic resonance (EPR). However, this correlation does not have a clear physical meaning, nor does it hold for many proteins with a perturbed T1Cu center. To address this issue, a new parameter of R′ [A450/(A450 + A600)] with a better physical meaning of a fractional SCys pseudo-σ to Cu(II) charge transfer transition intensity is defined and a quadratic relationship between R′ and Az is found on the basis of a comprehensive analysis of ultraviolet–visible absorption, EPR, and structural parameters of T1Cu proteins. We are able to find good correlations between R′ and the displacement of copper from the trigonal plane defined by the His2Cys ligands and the angle between the NHis1–Cu–NHis2 plane and the SCys–Cu–axial ligand plane, providing a structural basis for the observed correlation. These findings and analyses provide a new framework for a deeper understanding of the spectroscopic and electronic properties of T1Cu proteins, which may allow better design and applications of this important class of proteins for redox and electron transfer functions.more » « less
-
Abstract The key to type 1 copper (T1Cu) function lies in the fine tuning of the CuII/Ireduction potential (E°′T1Cu) to match those of its redox partners, enabling efficient electron transfer in a wide range of biological systems. While the secondary coordination sphere (SCS) effects have been used to tuneE°′T1Cuin azurin over a wide range, these principles are yet to be generalized to other T1Cu‐containing proteins to tune catalytic properties. To this end, we have examined the effects of Y229F, V290N and S292F mutations around the T1Cu of small laccase (SLAC) fromStreptomyces coelicolorto match the highE°′T1Cuof fungal laccases. Using ultraviolet‐visible absorption and electron paramagnetic resonance spectroscopies, together with X‐ray crystallography and redox titrations, we have probed the influence of SCS mutations on the T1Cu and correspondingE°′T1Cu. While minimal and smallE°′T1Cuincreases are observed in Y229F‐ and S292F‐SLAC, the V290N mutant exhibits a majorE°′T1Cuincrease. Moreover, the influence of these mutations onE°′T1Cuis additive, culminating in a triple mutant Y229F/V290N/S292F‐SLAC with the highestE°′T1Cuof 556 mV vs. SHE reported to date. Further activity assays indicate that all mutants retain oxygen reduction reaction activity, and display improved catalytic efficiencies (kcat/KM) relative to WT‐SLAC.more » « less
An official website of the United States government
